

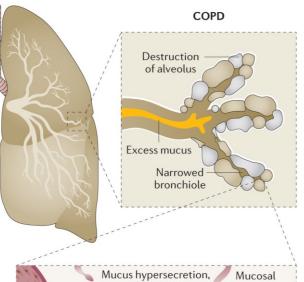
Concurso do Edital 054 – Vaga MC-047 Pesquisa Translacional em Doenças Crônicas Não-Transmissíveis

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
Centro de Ciências da Saúde
Instituto de Ciências Biomédicas

PROJETO DE ATUAÇÃO PROFISSIONAL

PLATAFORMA INTEGRADA PARA TRIAGENS BASEADAS EM QUÍMICA BIOORTOGONAL

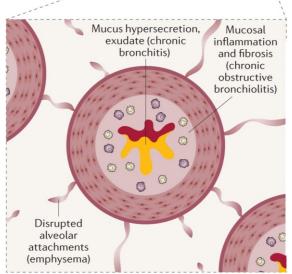
Candidato: Lucas Silva Franco


Rio de Janeiro

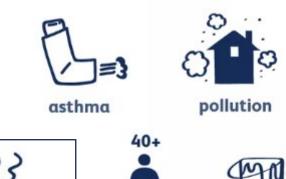
Fevereiro de 2025

Sumário desta apresentação

- 1. Introdução: Doença Pulmonar Obstrutiva Crônica
- 2. Triagens Baseadas em Química Bioortogonal
- 3. Objetivos
- 4. Metodologia Proposta
- 5. Aplicações Adicionais da Química Bioortogonal
- 6. Propostas para Ensino
- 7. Propostas para Extensão


Doença Pulmonar Obstrutiva Crônica e DCNTs

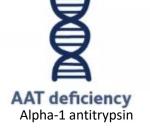
As DCNTs são definidas como condições de saúde que não são causadas por agentes infecciosos e que geralmente têm longa duração, evolução lenta e são resultado de uma combinação de fatores genéticos, fisiológicos, ambientais e comportamentais.


Organização Mundial da Saúde (OMS). (2021). Noncommunicable diseases. Disponível em: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases.

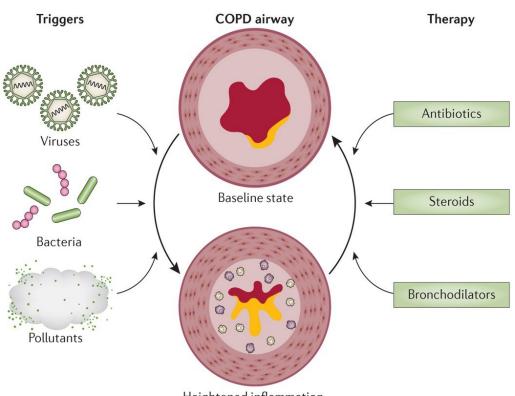
Nature Reviews | Disease Primers

Barnes, P., Burney, P., Silverman, E. *et al.* Chronic obstructive pulmonary disease. *Nature Reviews Disease Primers*, **1**, 15076 (2015).

- Hipersecreção de muco (bronquite crônica)
- Inflamação da mucosa e fibrose (bronquiolite obstrutiva crônica)
- Rompimento das ligações alveolares (enfisema)

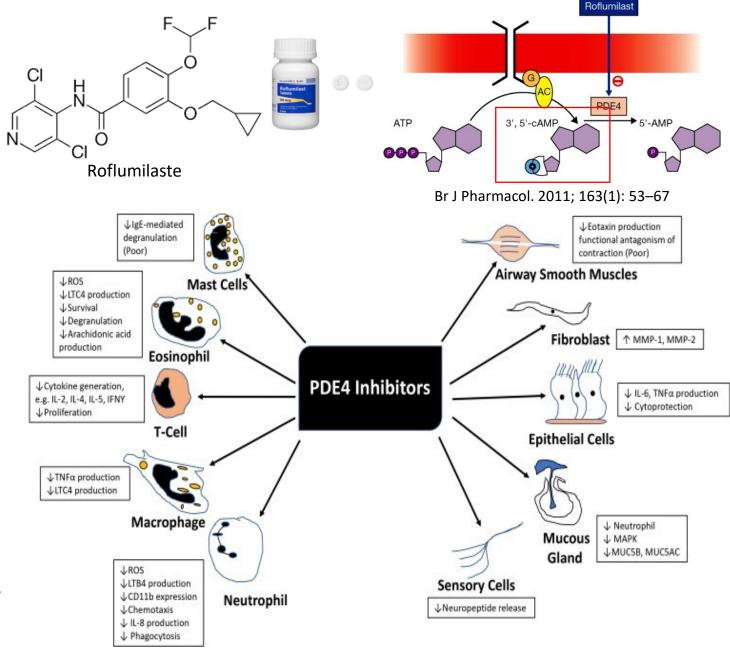


chemical exposure


Doença Pulmonar Obstrutiva Crônica (DPOC)

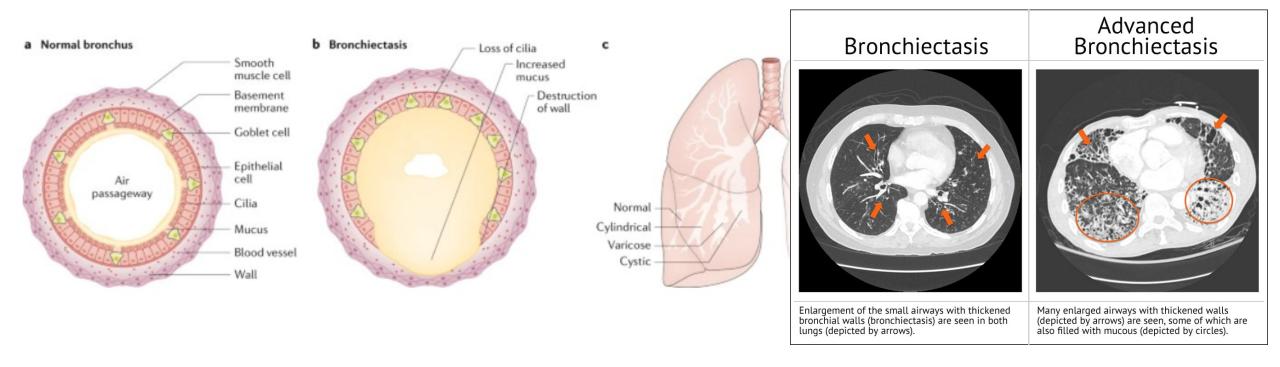
A prevalência de DPOC no Brasil foi de 17% entre adultos maiores de 40 anos.

Cruz, M. M., & Pereira, M. (2020). *Ciência & Saúde Coletiva, 25*(11), 4547-4557.

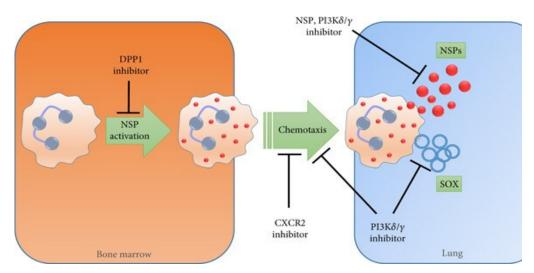

- Tratamento medicamentoso,
- Reabilitação pulmonar
- Suplementação de oxigênio (casos mais graves)

Tratamentos da DPOC

Heightened inflammation (oxidative stress, bronchoconstriction, oedema and mucus)


Barnes, P., Burney, P., Silverman, E. et al. Chronic obstructive pulmonary disease. *Nature Reviews Disease Primers*, **1**, 15076 (2015).

Cazzola, M. et al. (2023). Novel Anti-Inflammatory Approaches to COPD. *International Journal of Chronic Obstructive Pulmonary Disease*, 1333-1352.


Bronquiectasia: um biomarcador da DPOC

Bronquiectasia é a dilatação irreversível da árvore brônquica e é comumente acompanhada pelo espessamento da parede brônquica e impacto mucoide, como consequência da inflamação.

A detecção e tratamento precoce da bronquiectasia e de qualquer condição subjacente são importantes para prevenir danos adicionais aos pulmões.

Bronquiectasia: um biomarcador da DPOC

Mårdh, C. K. et al. (2017). Journal of Immunology Research. 2017:2017:5273201

Mucus hypersecretion, exudate (chronic bronchitis)

Disrupted alveolar attachments (emphysema)

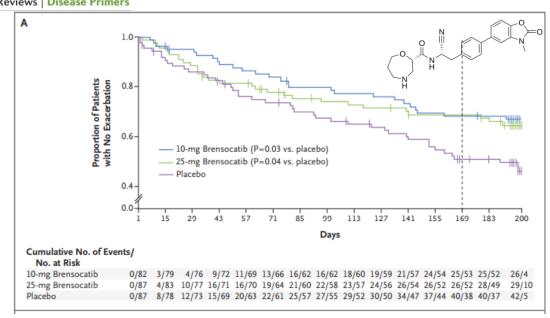
Rompimento

Mucosal inflammation and fibrosis (chronic obstructive bronchiolitis)

A ativação de serina-proteases de neutrófilos (NSPs) durante a maturação de neutrófilos na medula óssea ocorre via DPP1.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE


Phase 2 Trial of the DPP-1 Inhibitor Brensocatib in Bronchiectasis

Composição da Família de NSPs:

- Inclui elastase de neutrófilos (NE), proteinase 3 (PR3) e catepsina G (CG).
- Todas estão localizadas nos grânulos primários.
- Capazes de degradar a maioria dos componentes da matriz extracelular, como elastina e colágeno.

Estimulação de Secreção de Muco:

- NSPs são potentes estimulantes da secreção de muco das células epiteliais.
- Hipersecreção de muco é uma característica comum nas doenças neutrofílicas.
- Doenças incluídas: fibrose cística, bronquiectasia e DPOC crônica bronquítica.

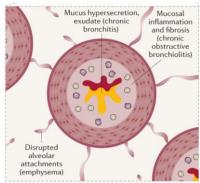
das ligações alveolares (enfisema)

Justificativa

- A Doença Pulmonar Obstrutiva Crônica (DPOC) representa uma necessidade médica não atendida, com tratamentos limitados para controlar a progressão da doença e um aumento no número de casos.
- Identificar a possibilidade de efeitos sinérgicos decorrentes da combinação de inibidores de PDE4, alvo validado para DPOC, com inibidores de DPP1, em estudos clínicos para bronquiectasia, permitindo o planejamento de inibidores multialvo.
- Emprego de métodos de triagem modernos na área de pesquisa translacional em fármacos.

Hipótese

Tratamento farmacológico da DPOC

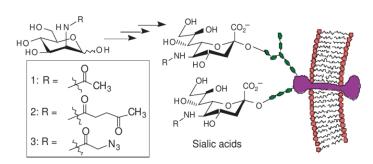

Inibidores

Modulação da resposta inflamatória

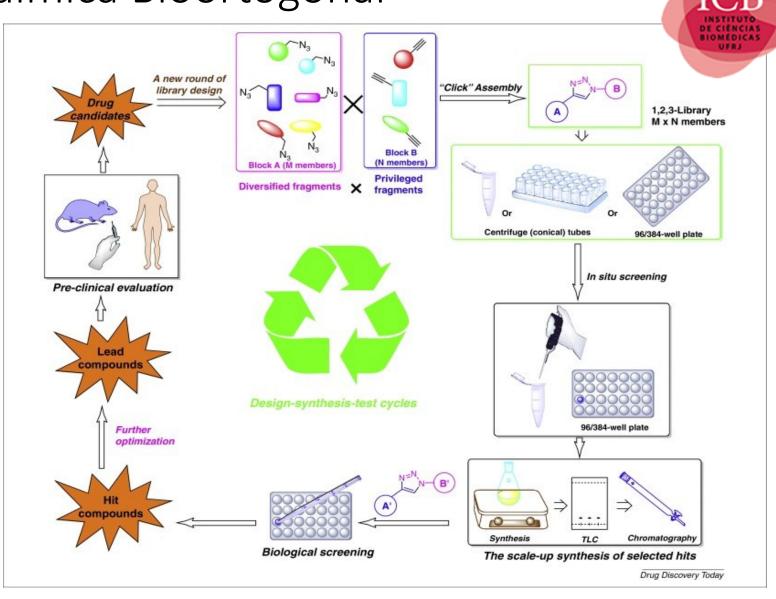
PDE4
Redução de mediadores
inflamatórios

DPP1
Menor ativação
de serina-proteases de
neutrófilos

Rompimento das ligações alveolares Hipersecreção Inflamação da mucosa


Observáveis por biomarcador

Triagem baseada em Química Bioortogonal

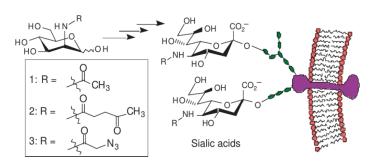


Carolyn R. Bertozzi
Prêmio Nobel em Química (2022)

A química bioortogonal refere-se a qualquer reação química que pode ocorrer em sistemas biológicos sem interferir nos processos bioquímicos naturais.

Saxon, E.; Bertozzi, C. R. Cell Surface Engineering by a Modified Staudinger Reaction. **Science (2000)**, 287 (5460), 2007–2010

Wang, X., Huang, B., Liu, X., & Zhan, P. (2016). Discovery of bioactive molecules from CuAAC click-chemistry-based combinatorial libraries. *Drug Discovery Today, 21*(1), 118-132.


Triagem baseada em Química Bioortogonal

Carolyn R. Bertozzi Prêmio Nobel em Química (2022)

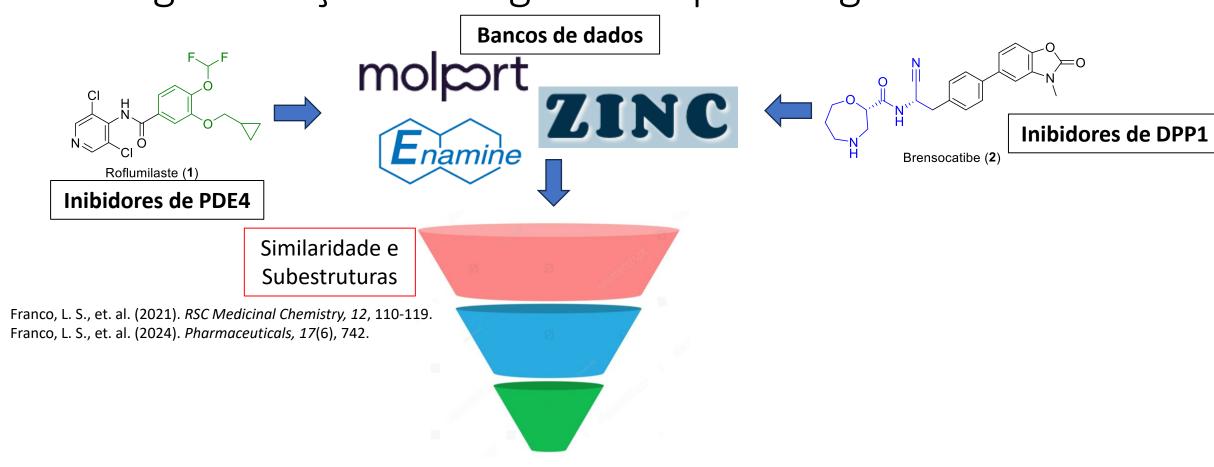
A química bioortogonal refere-se a qualquer reação química que pode ocorrer dentro de sistemas vivos sem interferir nos processos bioquímicos naturais.

Saxon, E.; Bertozzi, C. R. Cell Surface Engineering by a Modified Staudinger Reaction. **Science 2000**, 287 (5460), 2007–2010

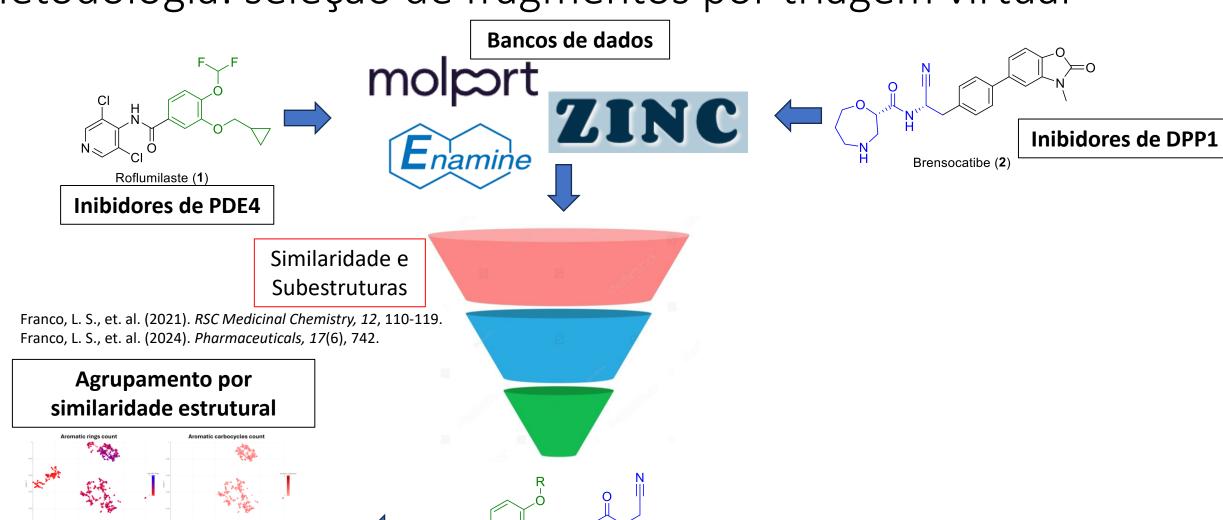
12 CONSUMO E PRODUÇÃO RESPONSÁVEIS

Assegurar padrões de produção e de consumo sustentáveis

Objetivos

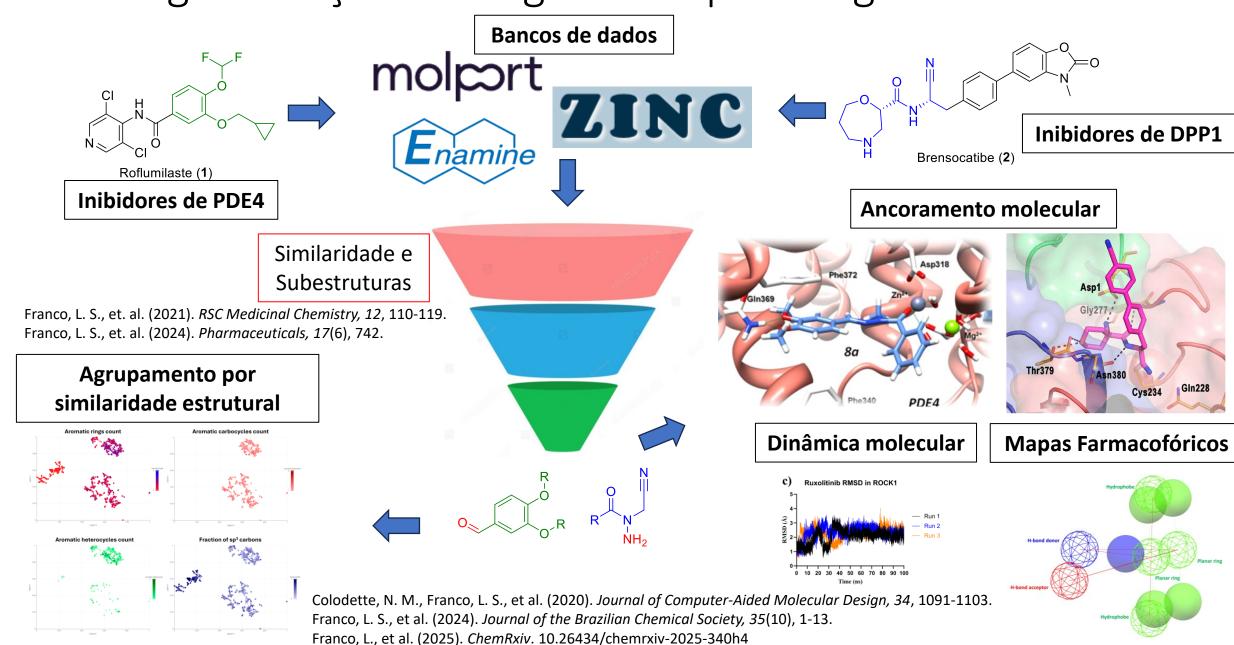

OBJETIVO GERAL

Os objetivos gerais deste projeto incluem o **desenvolvimento e padronização de protocolo de triagem baseada em química bioortogonal**, utilizando os alvos PDE4B e DPP1 como modelos.


OBJETIVOS ESPECÍFICOS

- 1. Seleção de fragmentos com grupos reativos compatíveis com química bioortogonal a partir de bancos de dados de substâncias, utilizando ferramentas *in silico*.
- 2. **Realização da triagem experimental** a partir dos fragmentos para identificar compostos com **atividade inibitória** frente aos alvos PDE4B e DPP1.
- 4. Planejamento e triagem de candidatos a **inibidores duais de PDE4B e DPP1**.
- 5. Síntese dos compostos ativos para confirmação de atividade por ensaios ortogonais.
- 6. Estudos de **relação estrutura-atividade** para selecionar compostos-protótipos promissores.
- 7. Realização de estudos farmacológicos para identificar **potencial para estudos pré-clínicos e projetos de pesquisa translacional em fármacos**.

Metodologia: seleção de fragmentos por triagem virtual



Metodologia: seleção de fragmentos por triagem virtual

Colodette, N. M., Franco, L. S., et al. (2020). *Journal of Computer-Aided Molecular Design, 34,* 1091-1103. Franco, L. S., et al. (2024). *Journal of the Brazilian Chemical Society, 35*(10), 1-13. Franco, L., et al. (2025). *ChemRxiv.* 10.26434/chemrxiv-2025-340h4

Metodologia: seleção de fragmentos por triagem virtual

Metodologia: triagem baseada em bibliotecas combinatórias dinâmicas

Jean-Marie Lehn

Building Blocks

Dynamic Combinatorial Library

Selection by Protein & Analysis

1987

Lehn, J.-M., & Eliseev, A. V. (2001). Science, 291(5512), 2331-2332.

"The table has been adapted from Hartman et al.3 and complemented. Copyright 2019 John Wiley & Sons.

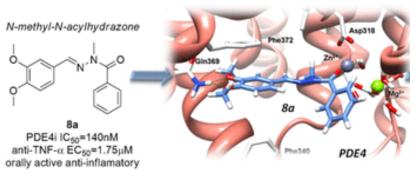
Table 1. Protein-Directed DCC Reported^a

reversible exchange	protein target	analytical method	DCL BBs	DCL conditions	references
boronate ester	a-CT	11B-NMR	6	pH 5.8	Leung et al.6
	PHD2	DC-MS	8 × 11	pH 7.5, r.t.	Demetriades et al. ⁷
imines	HEWL	SEC-MS	12	3 h, r.t.	Fang et al.9
hydrazone	MPO	activity assay	1×30 ,	pH 7, 25 °C	Soubhye et al. 10
			1×20		
	mGAT1	MS	9×28	pH 7.1, 4 h, r.t.	Hauke et al. ¹¹
acyl hydrazone	GST	LC-MS	11	pH 6.2, 6 h, r.t.	Bhat et al.12
	endothiapepsin	LC-MS	10	pH 6, 24 h, r.t.	Mondal et al. 19
	FimH	HPLC	2×5	pH 7, 3 d	Frei et al. 13
	UGM	HPLC	7×14	pH 6, 14 h, 25 °C	Fu et al. ¹⁴
	FabH	19F-NMR	6	pH 6.2, 12 h, r.t.	Ekström et al. 15
	ALKBH3	DSF, HPLC	2×10	pH 6, 5 h, r.t.	Das et al. ¹⁶
	TcBDF3	LC-MS	10	pH 6.5, 10 h, r.t.	García et al. ¹⁷
	NCS1	LC-MS	6	pH 7.8, 5 h, 4 °C	Canal-Martin et al.
bisacyl hydrazone	GST	HPLC	7	pH 6.4, 6 h, 25 °C	Clipson et al. 18
	endothiapepsin	LC-MS	1×4 ,	pH 4.6, 20 h, r.t.	Mondal et al.20
			1×5		
oximes	GAT1	MS	22×5	pH 7.1, 4 h, 37 °C	Kern et al. ²²
thiol-disulfide	TGR	LC-MS	6	pH 8.8, 24 h, r.t.	Saiz et al. ²⁴
hemithio-acetal	β -galactosidase	STD-NMR	7	pH 7.5, r.t.	Caraballo et al. ²⁵

Medicinal Chemistry

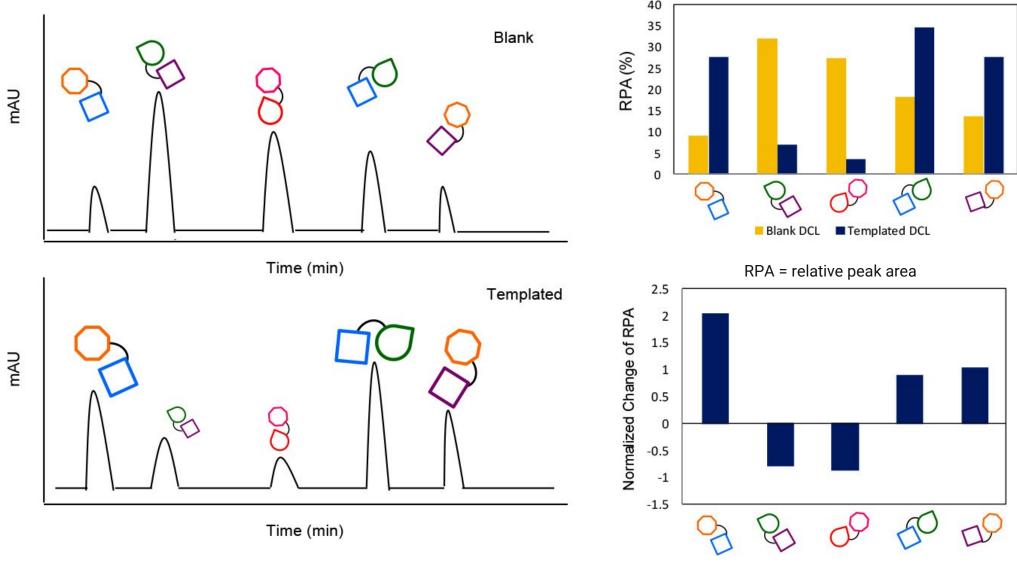
pubs.acs.org/jmc

Design, Synthesis, and Pharmacological Evaluation of N-Acylhydrazones and Novel Conformationally Constrained Compounds as Selective and Potent Orally Active Phosphodiesterase-4 Inhibitors

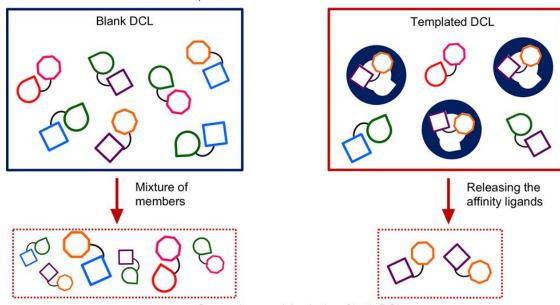

Arthur E. Kümmerle, $\uparrow, \uparrow, \uparrow, \downarrow$ Martine Schmitt, Suzana V. S. Cardozo, Claire Lugnier, Pascal Villa, Alexandra B. Lopes, $\uparrow, \uparrow, \uparrow$ Nelilma C. Romeiro, Hélène Justiniano, Marco A. Martins, Carlos A. M. Fraga, $\uparrow, \uparrow, \downarrow$ Jean-Jacques Bourguignon, \uparrow, \downarrow and Eliezer J. Barreiro $\star, \uparrow, \downarrow$

†Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 68023, RJ 21944-971, Brazil

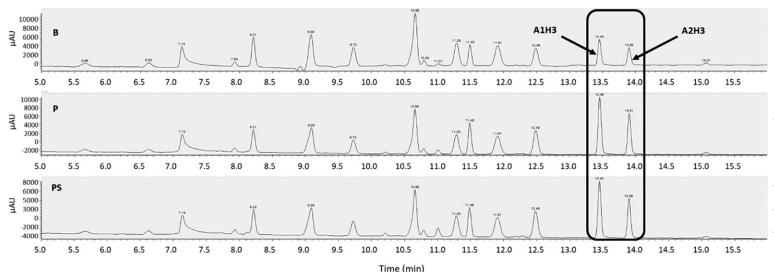
[‡]Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil


[§]Laboratoire d'Innovation Thérapeutique, UMR7200, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France

▽Laboratório de Inflamação, Departamento de Fisiologia e Farmacodinâmica, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brazil


J. Med. Chem. 2012, 55, 17, 7525-7545

Metodologia: triagem baseada em bibliotecas combinatórias dinâmicas


Metodologia: triagem baseada em bibliotecas combinatórias dinâmicas

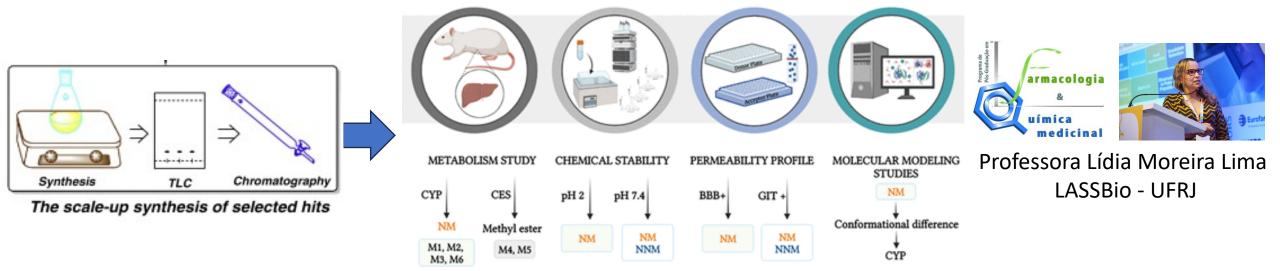
COMPARATIVE METHODS: HPLC, MS

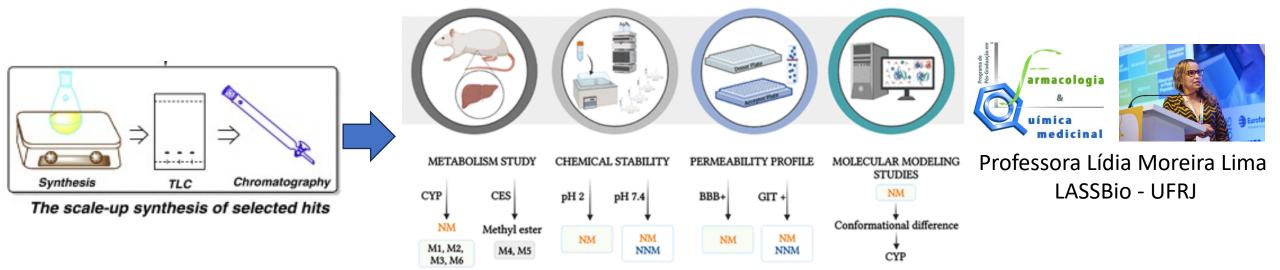
Comparison and Analysis of both DCLs

Canal-Martín, A., & Pérez-Fernández, R. (2020). ACS Omega, 5(41), 26307-26315.

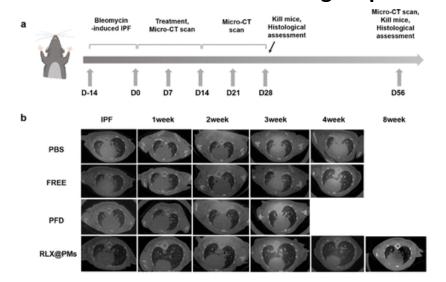
14-3-3 / synaptopodin PPI stabilizers

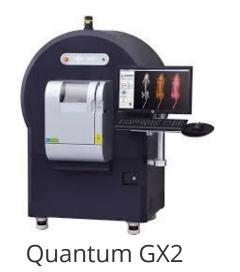
Hartman, A. M., et al. (2020). ACS Medicinal Chemistry Letters, 11(5), 1041-1046.


Professora Lídia Moreira Lima LASSBio - UFRJ



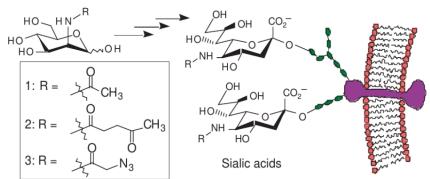
Professor Arthur Kümmerle
LaDMolQM – UFRRJ
&
Professora Luzineide Tinoco
LADIE - UFRJ


Metodologia: síntese, avaliação DMPK e avaliação farmacológica

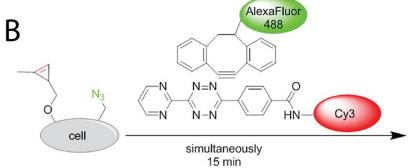


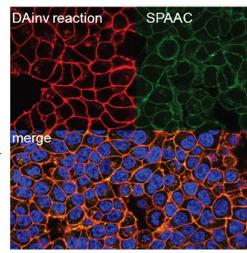
Metodologia: síntese, avaliação DMPK e avaliação farmacológica

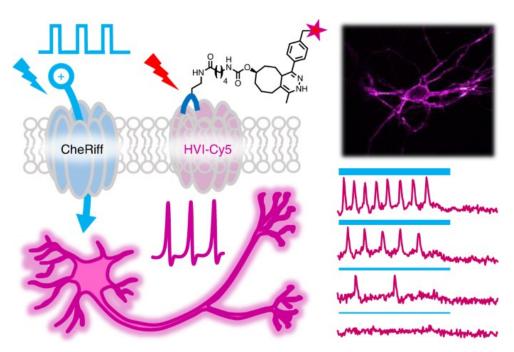
Plataforma de imagem por tomografia computadorizada para animais de pequeno porte



Professor Marco Aurélio Martins Laboratório de Inflamação (Fiocruz)

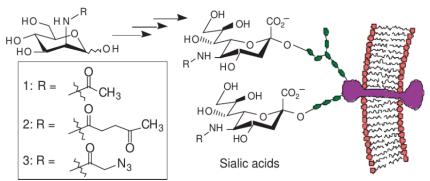

Aplicações adicionais da química bioortogonal




Saxon, E.; Bertozzi, C. R. Cell Surface Engineering by a Modified Staudinger Reaction. Science (2000), 287 (5460), 2007–2010

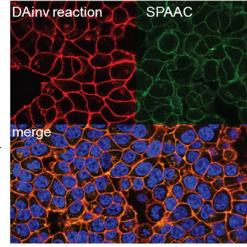
Imageamento metabólico: incorporação metabólica de dois açúcares diferentes em glicanos da superfície celular.

Confocal microscopy (Olympus FV1000)


Liu, S. et al. (2021). A far-red hybrid voltage indicator enabled by bioorthogonal engineering of rhodopsin on live neurons.

Nature Chemistry, 13, 472–479.

Aplicações adicionais da química bioortogonal



Saxon, E.; Bertozzi, C. R. Cell Surface Engineering by a Modified Staudinger Reaction. Science (2000), 287 (5460), 2007–2010

Imageamento metabólico: incorporação metabólica de dois açúcares diferentes em glicanos da superfície celular.

Confocal microscopy (Olympus FV1000)

Sondas Químicas Covalentes

Professor Matthias Gehringer Covalent Kinase Inhibitors

Fomento e colaborações em pesquisa translacional

Programa de Apoio a Docente Recém Doutor – Antonio Luís Vianna

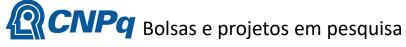
Auxílio Pesquisador Contratado (ARC) Auxílio a Pesquisa (APQ1) Auxílio a Jovens Pesquisadores

Clinical Development

Phase II: Efficacy,

Review & Approval

Phase III:


Efficacy.

FDA

Postmarketing Evaluation / Phase IV

Operational

Financial/ Administrative

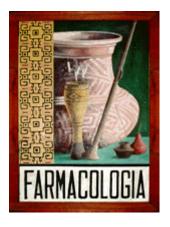
Fonte: Duke-Margolis Health Policy Center. Translational Science in Drug Development: Surrogate Endpoints,

Scientific

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

Fomentos e colaborações internacionais Prof. Matthias Gehringer e Stefan Laufer

Biomarkers, and More. Virtual Meeting



Atividades de Ensino

Programa de Ensino de Graduação de Farmacologia - PGF Medicina

Farmácia

Enfermagem

Odontologia

Nutrição

Psicologia

Ciências Biológicas

Fisioterapia

PIPD - UFRJ

BMF-762 - Redação Científica

BMF-775 - Seminários Internacionais

Tuesday, 25th of February 2025, 5-6 PM (CET)

Targeting the Oncogenic State of RAS with Tri-Complex Inhibitors

Dr. Elena Koltun

() REVOLUTION

MEDICINES

Credenciamento junto ao PPGFQM

Proposta de disciplina: **Pesquisa Translacional em Fármacos**

Proposta de disciplina: Princípios do Planejamento de Fármacos

Atividades de Extensão

BMF744 - Divulgação Científica I

Carga Horária: 60 horas – 4 créditos

Ementa: se propõe a preparar material de divulgação em tópico a ser escolhido e apresentar o tema em escolha da rede pública de ensino do Rio de Janeiro.

Atividades na Escola Estadual Professor Theotônio Vilela Brandão e no 51º Congresso da SBFTE, em Maceió.

Divulgação e Popularização da Ciência: "Uso Racional de Medicamentos"

Agradecimentos

Prof. Eliezer Barreiro *In memoriam*

Prof.^a Lídia M. Lima

Prof. Carlos A. M. Fraga
In memoriam

Agradecimentos

Prof. Eliezer Barreiro *In memoriam*

Prof.^a Lídia M. Lima

Prof. Carlos A. M. Fraga *In memoriam*

"Meditai se só as nações fortes podem fazer ciência ou se é a ciência que as torna fortes."

Walter Oswaldo Cruz

